Sabtu, 05 Mei 2012

Ar-Razi


Ar-Razi
Cendekiawan Persia
Era Pertengahan

Gambaran Al-Razi oleh pelukis Eropa, dalam karya Gerard dari Cremona "Receuil des traites de medecine" 1250-1260.
Nama:
Razi
Lahir:
August 26, 865
Meninggal:
925
Aliran/tradisi:
Minat utama:
Gagasan penting:
Menemukan Alkohol, menciptakan asam sulfur, membuat catatan tentang penyakit cacar, memelopori bedah saraf dan bedah mata



Abu Bakar Muhammad bin Zakaria ar-Razi (Persia : أبوبكر الرازي) atau dikenali sebagai Rhazes di dunia barat merupakan salah seorang pakar sains Iran yang hidup antara tahun 864 - 930. Ia lahir di Rayy, Teheran pada tahun 251 H./865 dan wafat pada tahun 313 H/925.
Ar-Razi sejak muda telah mempelajari filsafat, kimia, matematika dan kesastraan. Dalam bidang kedokteran, ia berguru kepada Hunayn bin Ishaq di Baghdad. Sekembalinya ke Teheran, ia dipercaya untuk memimpin sebuah rumah sakit di Rayy. Selanjutnya ia juga memimpin Rumah Sakit Muqtadari di Baghdad.
Ar-Razi juga diketahui sebagai ilmuwan serba bisa dan dianggap sebagai salah satu ilmuwan terbesar dalam Islam.

Biografi

Ar-Razi lahir pada tanggal 28 Agustus 865 Hijirah dan meninggal pada tanggal 9 Oktober 925 Hijriah. Nama Razi-nya berasal dari nama kota Rayy. Kota tersebut terletak di lembah selatan jajaran Dataran Tinggi Alborz yang berada di dekat Teheran, Iran. Di kota ini juga, Ibnu Sina menyelesaikan hampir seluruh karyanya.
Saat masih kecil, ar-Razi tertarik untuk menjadi penyanyi atau musisi tapi dia kemudian lebih tertarik pada bidang alkemi. Pada umurnya yang ke-30, ar-Razi memutuskan untuk berhenti menekuni bidang alkemi dikarenakan berbagai eksperimen yang menyebabkan matanya menjadi cacat. Kemudian dia mencari dokter yang bisa menyembuhkan matanya, dan dari sinilah ar-Razi mulai mempelajari ilmu kedokteran.
Dia belajar ilmu kedokteran dari Ali ibnu Sahal at-Tabari, seorang dokter dan filsuf yang lahir di Merv. Dahulu, gurunya merupakan seorang Yahudi yang kemudian berpindah agama menjadi Islam setelah mengambil sumpah untuk menjadi pegawai kerajaan dibawah kekuasaan khalifah Abbasiyah, al-Mu'tashim.
Razi kembali ke kampung halamannya dan terkenal sebagai seorang dokter disana. Kemudian dia menjadi kepala Rumah Sakit di Rayy pada masa kekuasaan Mansur ibnu Ishaq, penguasa Samania. Ar-Razi juga menulis at-Tibb al-Mansur yang khusus dipersembahkan untuk Mansur ibnu Ishaq. Beberapa tahun kemudian, ar-Razi pindah ke Baghdad pada masa kekuasaan al-Muktafi dan menjadi kepala sebuah rumah sakit di Baghdad.
Setelah kematian Khalifan al-Muktafi pada tahun 907 Masehi, ar-Razi memutuskan untuk kembali ke kota kelahirannya di Rayy, dimana dia mengumpulkan murid-muridnya. Dalam buku Ibnu Nadim yang berjudul Fihrist, ar-Razi diberikan gelar Syaikh karena dia memiliki banyak murid. Selain itu, ar-Razi dikenal sebagai dokter yang baik dan tidak membebani biaya pada pasiennya saat berobat kepadanya.

Kontribusi

Ø  Bidang Kedokteran

1.      Cacar dan campak

Sebagai seorang dokter utama di rumah sakit di Baghdad, ar-Razi merupakan orang pertama yang membuat penjelasan seputar penyakit cacar:
"Cacar terjadi ketika darah 'mendidih' dan terinfeksi, dimana kemudian hal ini akan mengakibatkan keluarnya uap. Kemudian darah muda (yang kelihatan seperti ekstrak basah di kulit) berubah menjadi darah yang makin banyak dan warnanya seperti anggur yang matang. Pada tahap ini, cacar diperlihatkan dalam bentuk gelembung pada wine. Penyakit ini dapat terjadi tidak hanya pada masa kanak-kanak, tapi juga masa dewasa. Cara terbaik untuk menghindari penyakit ini adalah mencegah kontak dengan penyakit ini, karena kemungkinan wabah cacar bisa menjadi epidemi."
Diagnosa ini kemudian dipuji oleh Ensiklopedia Britanika (1911) yang menulis: "Pernyataan pertama yang paling akurat dan tepercaya tentang adanya wabah ditemukan pada karya dokter Persia pada abad ke-9 yaitu Rhazes, dimana dia menjelaskan gejalanya secara jelas, patologi penyakit yang dijelaskan dengan perumpamaan fermentasi anggur dan cara mencegah wabah tersebut."
Buku ar-Razi yaitu Al-Judari wal-Hasbah (Cacar dan Campak) adalah buku pertama yang membahas tentang cacar dan campak sebagai dua wabah yang berbeda. Buku ini kemudian diterjemahkan belasan kali ke dalam Latin dan bahasa Eropa lainnya. Cara penjelasan yang tidak dogmatis dan kepatuhan pada prinsip Hippokrates dalam pengamatan klinis memperlihatkan cara berpikir ar-Razi dalam buku ini.
Berikut ini adalah penjelasan lanjutan ar-Razi: "Kemunculan cacar ditandai oleh demam yang berkelanjutan, rasa sakit pada punggung, gatal pada hidung dan mimpi yang buruk ketika tidur. Penyakit menjadi semakin parah ketika semua gejala tersebut bergabung dan gatal terasa di semua bagian tubuh. Bintik-bintik di muka mulai bermunculan dan terjadi perubahan warna merah pada muka dan kantung mata. Salah satu gejala lainnya adalah perasaan berat pada seluruh tubuh dan sakit pada tenggorokan."

2.      Alergi dan demam

Razi diketahui sebagai seorang ilmuwan yang menemukan penyakit "alergi asma", dan ilmuwan pertama yang menulis tentang alergi dan imunologi. Pada salah satu tulisannya, dia menjelaskan timbulnya penyakit rhintis setelah mencium bunga mawar pada musim panas. Razi juga merupakan ilmuwan pertama yang menjelaskan demam sebagai mekanisme tubuh untuk melindungi diri.

3.      Farmasi

Pada bidang farmasi, ar-Razi juga berkontribusi membuat peralatan seperti tabung, spatula dan mortar. Ar-razi juga mengembangkan obat-obatan yang berasal dari merkuri.

4.      Etika kedokteran

Ar-Razi juga mengemukakan pendapatnya dalam bidang etika kedokteran. Salah satunya adalah ketika dia mengritik dokter jalanan palsu dan tukang obat yang berkeliling di kota dan desa untuk menjual ramuan. Pada saat yang sama dia juga menyatakan bahwa dokter tidak mungkin mengetahui jawaban atas segala penyakit dan tidak mungkin bisa menyembuhkan semua penyakit, yang secara manusiawi sangatlah tidak mungkin. Tapi untuk meningkatkan mutu seorang dokter, ar-Razi menyarankan para dokter untuk tetap belajar dan terus mencari informasi baru. Dia juga membuat perbedaan antara penyakit yang bisa disembuhkan dan yang tidak bisa disembuhkan. Ar-Razi kemudian menyatakan bahwa seorang dokter tidak bisa disalahkan karena tidak bisa menyembuhkan penyakit kanker dan kusta yang sangat berat. Sebagai tambahan, ar-Razi menyatakan bahwa dia merasa kasihan pada dokter yang bekerja di kerajaan, karena biasanya anggota kerajaan suka tidak mematuhi perintah sang dokter.
Ar-Razi juga mengatakan bahwa tujuan menjadi dokter adalah untuk berbuat baik, bahkan sekalipun kepada musuh dan juga bermanfaat untuk masyarakat sekitar.



Jumat, 04 Mei 2012

TEORI BILANGAN

2. Teori Bilangan

  • Teori bilangan (number theory) adalah teori yang mendasar dalam memahami algoritma kriptografi
  • Bilangan yang dimaksudkan adalah bilangan bulat (integer)
Bilangan Bulat
  • Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0
  • Berlawanan dengan bilangan bulat adalah bilangan riil yang mempunyai titik desimal, seperti 8.0, 34.25, 0.02.
Sifat Pembagian pada Bilangan Bulat

  • Misalkan a dan b adalah dua buah bilangan bulat dengan syarat a ¹ 0. Kita menyatakan bahwa a habis membagi b (a divides b) jika terdapat bilangan bulat c  sedemikian sehingga b = ac.
  • Notasi: a | b  jika b = ac, c Î Z dan a ¹ 0.      (Z = himpunan bilangan bulat)
  • Kadang-kadang pernyataan “a habis membagi b“ ditulis juga  b  kelipatan a”.
  • Contoh 1: 4 | 12 karena 124 = 3 (bilangan bulat) atau 12 = 4 ´ 3. Tetapi 4 | 13 karena 134 = 3.25 (bukan bilangan bulat).

Teorema 1 (Teorema Euclidean). Misalkan m dan n adalah dua buah bilangan bulat dengan syarat n > 0. Jika m dibagi dengan n maka terdapat dua buah bilangan bulat unik q (quotient) dan r (remainder), sedemikian sehingga
                                m = nq + r                                                           (1)
dengan 0 £ r < n.

Contoh 2.
(i)  1987 dibagi dengan 97 memberikan hasil bagi 20 dan sisa 47:
                        1987 = 97 × 20 + 47
(ii) –22 dibagi dengan 3 memberikan hasil bagi –8 dan sisa 2:          
–22 = 3(–8) + 2          
tetapi –22 = 3(–7)  – 1 salah karena r = –1 tidak memenuhi syarat 0 £ r < n.                                                                              
Pembagi Bersama Terbesar (PBB)

  • Misalkan a dan b adalah dua buah bilangan bulat tidak nol. Pembagi bersama terbesar (PBB – greatest common divisor atau gcd) dari a dan b adalah bilangan bulat terbesar d sedemikian sehingga d | a dan d | b. Dalam hal ini kita nyatakan bahwa PBB(a, b) = d.
·         Contoh 3. Faktor pembagi 45: 1, 3, 5, 9, 15, 45;
Faktor pembagi 36: 1, 2, 3, 4, 9, 12, 18, 36;
Faktor pembagi bersama dari 45 dan 36 adalah 1, 3, 9
PBB(45, 36) = 9.

Algoritma Euclidean
·         Algoritma Euclidean adalah algoritma untuk mencari PBB dari dua buah bilangan bulat.
·         Euclid, penemu algoritma Euclidean, adalah seorang matematikawan Yunani yang menuliskan algoritmanya tersebut dalam bukunya yang terkenal, Element.

·         Diberikan dua buah bilangan bulat tak-negatif m dan n (m ³ n). Algoritma Euclidean berikut mencari  pembagi bersama terbesar dari m dan n.

Algoritma Euclidean

1. Jika n = 0 maka
       m adalah PBB(m, n);
       stop.
 tetapi jika n ¹ 0,
           lanjutkan ke langkah 2.
2.  Bagilah m dengan n dan misalkan r adalah sisanya.
3. Ganti nilai m dengan nilai n dan nilai n dengan nilai r, lalu ulang kembali ke langkah 1.

Contoh 4. m = 80, n = 12 dan dipenuhi syarat m ³ n

Sisa pembagian terakhir sebelum 0 adalah 4, maka PBB(80, 12) = 4.                                                         

Relatif Prima

·         Dua buah bilangan bulat a dan b dikatakan relatif prima jika PBB(a, b) = 1.

·         Contoh 5. 20 dan 3 relatif prima sebab PBB(20, 3) = 1. Begitu juga 7 dan 11 relatif prima karena PBB(7, 11) = 1. Tetapi 20 dan 5 tidak relatif prima sebab PBB(20, 5) = 5 ¹ 1.

·         Jika a dan b relatif prima, maka terdapat bilangan bulat m dan n sedemikian sehingga

                                    ma + nb = 1                                                                 (2)

·         Contoh 6. Bilangan 20 dan 3 adalah relatif prima karena PBB(20, 3) =1, atau dapat ditulis

                                    2 . 20 + (–13) . 3 = 1

dengan m = 2 dan n = –13. Tetapi 20 dan 5 tidak relatif prima karena PBB(20, 5) = 5 ¹ 1 sehingga 20 dan 5 tidak dapat dinyatakan dalam m . 20 + n . 5 = 1.                                                                              
Aritmetika Modulo

·         Misalkan a adalah bilangan bulat dan m adalah bilangan bulat > 0. Operasi a mod m (dibaca “a modulo m”) memberikan sisa jika a dibagi dengan m.
·         Notasi: a mod m = r  sedemikian sehingga a = mq + r, dengan 0 £ r < m.

·         Bilangan m disebut modulus atau modulo, dan hasil aritmetika modulo m terletak di dalam himpunan {0, 1, 2, …, m – 1} (mengapa?). 
Contoh 7. Beberapa hasil operasi dengan operator modulo:
(i)   23 mod 5 = 3        (23 = 5 × 4 +  3)
                        (ii)  27 mod 3 = 0        (27 = 3 × 9 + 0)
                        (iii) 6 mod 8 = 6                      (6 = 8 × 0 + 6) 
                        (iv)  0 mod 12 = 0       (0 = 12 × 0 + 0)
                        (v) – 41 mod 9 = 4      (–41 = 9 (–5) + 4)
                        (vi) – 39 mod 13 = 0   (–39 = 13(–3) + 0)

Penjelasan untuk (v): Karena a negatif, bagi |a| dengan m mendapatkan sisa r’. Maka a mod m = mr’ bila r¹ 0. Jadi |– 41| mod 9 = 5, sehingga  –41 mod 9 = 9 – 5 = 4.                                                                 

Kongruen

·         Misalnya 38 mod 5 = 3 dan 13 mod 5 = 3, maka kita katakan 38 º 13 (mod 5) (baca: 38 kongruen dengan 13 dalam modulo 5).

·         Misalkan a dan b adalah bilangan bulat dan m adalah bilangan > 0, maka a º b (mod m) jika m habis membagi ab.

·         Jika a tidak kongruen dengan b dalam modulus m, maka ditulis a º/ b (mod m) .

Contoh 8.
17 º 2 (mod 3)                        ( 3 habis membagi 17 – 2 = 15)
 –7 º 15 (mod 11)       (11 habis membagi –7 – 15 = –22)
12 º/ 2 (mod 7)                       (7 tidak habis membagi 12 – 2 = 10 )
–7 º/ 15 (mod 3)         (3 tidak habis membagi –7 – 15 = –22)         
           




·         Kekongruenan a º b (mod m) dapat pula dituliskan dalam hubungan          
a = b + km                                                                                           (3)
yang dalam hal ini k adalah bilangan bulat.

Contoh 9.
17 º 2 (mod 3)            dapat ditulis sebagai 17 = 2 + 5 × 3
–7 º 15 (mod 11) dapat ditulis sebagai –7 = 15 + (–2)11                                      

·         Berdasarkan definisi aritmetika modulo, kita dapat menuliskan a mod m = r  sebagai
                        a º r (mod m)

Contoh 10.
Beberapa hasil operasi dengan operator modulo berikut:
         (i)   23 mod 5 = 3           dapat ditulis sebagai 23 º 3 (mod 5)
                                                            (ii)  27 mod 3 = 0        dapat ditulis sebagai 27 º 0 (mod 3)
                                                            (iii) 6 mod 8 = 6                  dapat       ditulis sebagai 6 º 6 (mod 8)
                                                            (iv)  0 mod 12 = 0      dapat ditulis sebagai 0 º 0 (mod 12)
                                                            (v) – 41 mod 9 = 4     dapat ditulis sebagai –41 º 4 (mod 9)
                                                            (vi) – 39 mod 13 = 0  dapat ditulis sebagai – 39 º 0 (mod 13)                                          

Teorema 2. Misalkan m adalah bilangan bulat positif.
1. Jika a º b (mod m) dan c adalah sembarang bilangan bulat maka
(i)  (a + c) º (b + c) (mod m)
(ii) ac º bc (mod m)
(iii) ap º bp (mod m) untuk suatu bilangan bulat tak negatif p.

2. Jika a º b (mod m) dan c º d (mod m), maka
(i)  (a + c) º (b + d) (mod m)
(ii) ac º bd (mod m)

Bukti (hanya untuk 1(ii) dan 2(i) saja):
            1(ii)      a º b (mod m) berarti:
                                    Û a = b + km             
                                    Û ab = km
                                    Û (ab)c = ckm                   
                                    Û ac = bc + Km                    
                                    Û ac º bc (mod m)                                                         ¾                                                             
                       
      2(i)       a º b (mod m) Û        a = b + k1m
                  c º d (mod m) Û        c = d + k2m  +
                                                Û        (a + c) = (b + d) + (k1 + k2)m
                                                Û        (a + c) = (b + d) + km     ( k = k1 + k2)
Û                (a + c) = (b + d) (mod m)                         ¾                         

Contoh 11.
Misalkan 17 º 2 (mod 3) dan 10 º 4 (mod 3), maka menurut Teorema 2,
17 + 5 = 2 + 5 (mod 3)     Û              22 = 7 (mod 3)                       
17 . 5 = 5 × 2 (mod 3)       Û   85 = 10 (mod 3)                     
17 + 10  = 2 + 4 (mod 3)  Û  27 = 6 (mod 3)                       
17 . 10 = 2 × 4 (mod 3)     Û   170 = 8 (mod 3)                     

·         Perhatikanlah bahwa Teorema 2 tidak memasukkan operasi pembagian pada aritmetika modulo karena jika kedua ruas dibagi dengan bilangan bulat, maka kekongruenan tidak selalu dipenuhi. Misalnya:
(i)                 10 º 4 (mod 3) dapat dibagi dengan 2 karena 10/2 = 5 dan 4/2 = 2, dan 5 º 2 (mod 3)
(ii)               14 º 8 (mod 6) tidak dapat dibagi dengan 2, karena 14/2 = 7 dan 8/2 = 4, tetapi  7 º/ 4 (mod 6).  

Balikan Modulo (modulo invers)

·         Jika a dan m relatif prima dan m > 1, maka kita dapat menemukan balikan (invers) dari a modulo m. Balikan dari a modulo m adalah bilangan bulat  sedemikian sehingga

                        a º 1 (mod m)

Bukti: Dari definisi relatif prima diketahui bahwa PBB(a, m) = 1, dan menurut persamaan (2) terdapat bilangan bulat p dan q sedemikian sehingga

                        pa + qm = 1

yang mengimplikasikan bahwa

            pa + qm º 1 (mod m)

Karena  qm º 0 (mod m), maka

pa º 1 (mod m)
                                                 
Kekongruenan yang terakhir ini berarti bahwa p adalah balikan dari a modulo m.            ¾


·         Pembuktian di atas juga menceritakan bahwa untuk mencari balikan dari a modulo m, kita harus membuat kombinasi lanjar dari a dan m sama dengan 1. Koefisien a dari kombinasi lanjar tersebut merupakan balikan dari a modulo m.

Contoh 12.
Tentukan balikan dari 4 (mod 9), 17 (mod 7), dan 18 (mod 10).
Penyelesaian:
(a)  Karena PBB(4, 9) = 1, maka balikan dari 4 (mod 9) ada. Dari algoritma Euclidean diperoleh bahwa

9 = 2 × 4 + 1

      Susun persamaan di atas  menjadi

                        –2 × 4 + 1 × 9 = 1         

      Dari persamaan terakhir ini kita peroleh –2 adalah balikan dari 4 modulo 9. Periksalah bahwa

–2 × 4 º 1 (mod 9)       (9 habis membagi –2 × 4 – 1 = –9)

           
(b) Karena PBB(17, 7) = 1, maka balikan dari 17 (mod 7) ada. Dari algoritma Euclidean diperoleh  rangkaian pembagian berikut:

            17 = 2 × 7 + 3   (i)
             7 =  2 × 3 + 1   (ii)
              3 = 3 × 1 + 0   (iii)       (yang berarti: PBB(17, 7) = 1) )

      Susun (ii) menjadi:

            1 = 7 – 2 × 3     (iv)

      Susun (i) menjadi

            3 = 17 – 2 × 7   (v)

     Sulihkan (v) ke dalam (iv):

            1 = 7 – 2 × (17 – 2 × 7) = 1 × 7 – 2 × 17 + 4 × 7 = 5 × 7 – 2 × 17

         atau       

                –2 × 17  + 5 × 7 = 1

        Dari persamaan terakhir ini kita peroleh –2 adalah balikan dari 17 modulo 7. 

–2 × 17 º 1 (mod 7)     (7 habis membagi –2 × 17 – 1 = –35)

(c)   Karena PBB(18, 10) = 2 ¹ 1, maka balikan dari 18 (mod 10) tidak ada.


Kekongruenan Lanjar

·         Kekongruenan lanjar adalah kongruen yang berbentuk

                  ax º b (mod m)

dengan m adalah bilangan bulat positif, a dan b sembarang bilangan bulat,  dan x adalah peubah bilangan bulat.


·         Nilai-nilai x dicari sebagai berikut:
     ax = b + km

yang dapat disusun menjadi
              
           
dengan k adalah sembarang bilangan bulat. Cobakan untuk k = 0, 1, 2, … dan k = –1, –2, … yang menghasilkan x sebagai bilangan bulat.


Contoh 13.
Tentukan solusi: 4x º 3 (mod 9) dan 2x º 3 (mod 4)
Penyelesaian:
(i) 4x º 3 (mod 9)
           

k = 0 à x = (3 + 0 × 9)/4 = 3/4            (bukan solusi)
            k = 1 à x = (3 + 1 × 9)/4 = 3
            k = 2 à x = (3 + 2 × 9)/4 = 21/4          (bukan solusi)
            k = 3, k = 4  tidak menghasilkan solusi
            k = 5 à x = (3 + 5 × 9)/4 = 12
           
            k = –1 à x = (3 – 1 × 9)/4 = –6/4        (bukan solusi)
            k = –2 à x = (3 – 2 × 9)/4 = –15/4      (bukan solusi)
            k = –3 à x = (3 – 3 × 9)/4 = –6 
           
            k = –6 à x = (3 – 6 × 9)/4 = –15 
           

            Nilai-nilai x yang memenuhi: 3, 12, … dan –6, –15, …


(ii)  2x º 3 (mod 4)


Karena 4k genap dan 3 ganjil maka penjumlahannya menghasilkan ganjil, sehingga hasil penjumlahan tersebut jika dibagi dengan 2 tidak menghasilkan bilangan bulat. Dengan kata lain, tidak ada nilai-nilai x  yang memenuhi 2x º 3 (mod 5).



Chinese Remainder Problem

Pada abad pertama, seorang matematikawan China yang bernama Sun Tse mengajukan pertanyaan sebagai berikut:
           
Tentukan sebuah bilangan bulat yang bila dibagi dengan 5 menyisakan 3, bila dibagi 7 menyisakan 5, dan bila dibagi 11 menyisakan 7.

Pertanyaan Sun Tse dapat dirumuskan kedalam sistem kongruen lanjar:

            x º 3 (mod 5)
            x º 5 (mod 7)
            x º 7 (mod 11)

TEOREMA 5.6. (Chinese Remainder Theorem) Misalkan m1, m2, …, mn adalah bilangan bulat positif sedemikian sehingga PBB(mi, mj) = 1 untuk i ¹ j. Maka sistem kongruen lanjar

                                    x º ak (mod mk)

mempunyai sebuah solusi unik modulo m = m1 × m2 ×× mn.


Contoh 14.
Tentukan solusi  dari pertanyaan Sun Tse di atas.
Penyelesaian:
Menurut persamaan (5.6), kongruen pertama, x º 3 (mod 5), memberikan x = 3 + 5k1 untuk beberapa nilai k. Sulihkan ini ke dalam kongruen kedua menjadi 3 + 5k1 º 5 (mod 7), dari sini kita peroleh k1 º 6 (mod 7), atau k1 = 6 + 7k2  untuk beberapa nilai k2. Jadi kita mendapatkan x = 3 + 5k1 = 3 + 5(6 + 7k2) = 33 + 35k2 yang mana memenuhi dua kongruen pertama.  Jika x memenuhi kongruen yang ketiga, kita harus mempunyai 33 + 35k2 º 7 (mod 11), yang mengakibatkan k2 º 9 (mod 11) atau k2 = 9 + 11k3. Sulihkan k2 ini ke dalam kongruen yang ketiga menghasilkan x = 33 + 35(9 + 11k3) º 348 + 385k3 (mod 11). Dengan demikian, x º 348 (mod 385) yang memenuhi ketiga konruen tersebut. Dengan kata lain, 348 adalah solusi unik modulo 385. Catatlah bahwa 385 = 5 × 7 × 11.

Solusi unik ini mudah dibuktikan sebagai berikut.  Solusi tersebut modulo m = m1 × m2 × m3 = 5 × 7 × 11 = 5 × 77 = 11 × 35. Karena 77  3 º 1 (mod 5), 55 × 6 º 1 (mod 7), dan 35 × 6 º 1 (mod 11), solusi unik dari sistem kongruen tersebut adalah

                        x º 3 × 77 × 3 + 5 × 55 × 6  + 7 × 35 × 6 (mod 385)
                           º 3813 (mod 385) º 348 (mod 385)


Aritmetika Modulo dan Kriptografi

Aritmetika modulo cocok digunakan untuk kriptografi karena dua alasan:
1.            Oleh karena nilai-nilai aritmetika modulo berada dalam himpunan berhingga (0 sampai modulus m – 1), maka kita tidak perlu khawatir hasil perhitungan berada di luar himpunan.

2.            Karena kita bekerja dengan bilangan bulat, maka kita tidak khawatir kehilangan informasi akibat pembulatan (round off) sebagaimana pada operasi bilangan riil.



Bilangan Prima

·         Bilangan bulat positif p (p > 1) disebut bilangan prima jika pembaginya hanya 1 dan p.

·         Contoh: 23 adalah bilangan prima karena ia hanya habis dibagi oleh 1 dan 23.

·         Karena bilangan prima harus lebih besar dari 1, maka barisan bilangan prima dimulai dari 2, yaitu 2, 3, 5, 7, 11, 13, …. Seluruh bilangan prima adalah bilangan ganjil, kecuali 2 yang merupakan bilangan genap.

·         Bilangan selain prima disebut bilangan komposit (composite). Misalnya 20 adalah bilangan komposit karena 20 dapat dibagi oleh 2, 4, 5, dan 10, selain 1 dan 20 sendiri.


Teorema 3. (The Fundamental Theorem of Arithmetic). Setiap bilangan bulat positif yang lebih besar atau sama dengan 2 dapat dinyatakan sebagai perkalian satu atau lebih bilangan prima.

Contoh 15.
            9 = 3 ´ 3                                              (2 buah faktor prima)
            100 = 2 ´ 2 ´ 5 ´ 5                 (4 buah faktor prima) 
            13 = 13              (atau 1 ´ 13)  (1 buah faktor prima) 

·         Untuk menguji apakah n merupakan bilangan prima atau komposit, kita cukup membagi n dengan sejumlah bilangan prima, mulai dari 2, 3, … , bilangan prima £ Ön. Jika n habis dibagi dengan salah satu dari bilangan prima tersebut, maka n adalah bilangan komposit, tetapi jika n tidak habis dibagi oleh semua bilangan prima tersebut, maka n adalah bilangan prima.


Contoh 16.
Tunjukkan apakah (i) 171 dan (ii) 199 merupakan bilangan prima atau komposit.
Penyelesaian:
             (i) Ö171 = 13.077. Bilangan prima yang £ Ö171 adalah 2, 3, 5, 7, 11, 13. Karena 171 habis dibagi 3, maka 171 adalah bilangan komposit.

  (ii) Ö199 = 14.107. Bilangan prima yang £ Ö199 adalah 2, 3, 5, 7, 11, 13. Karena 199 tidak habis dibagi 2, 3, 5, 7, 11, dan 13, maka 199 adalah bilangan prima.                                           

·         Terdapat metode lain yang dapat digunakan untuk menguji keprimaan suatu bilangan bulat, yang terkenal dengan Teorema Fermat. Fermat (dibaca “Fair-ma”) adalah seorang  matematikawan Perancis pada tahun 1640.


Teorema 4 (Teorema Fermat). Jika p adalah bilangan prima dan a adalah bilangan bulat  yang tidak habis dibagi dengan p,  yaitu PBB(a, p) = 1, maka

            ap–1 º 1 (mod p)



Contoh 17. 
Kita akan menguji apakah 17 dan 21 bilangan prima atau bukan. Di sini kita mengambil nilai a = 2 karena PBB(17, 2) = 1 dan PBB(21, 2) = 1. Untuk 17,
                       
                              217–1 = 65536 º 1 (mod 17)

karena 17 tidak membagi 65536 – 1 = 65535    (6553517 = 3855).
Untuk 21,

                              221–1 =1048576 º\ 1 (mod 21)

karena 21 tidak habis membagi 1048576 – 1 = 1048575.                                                               

·         Kelemahan Teorema Fermat: terdapat bilangan komposit n sedemikian sehingga 2n–1 º 1 (mod n). Bilangan bulat seperti itu disebut bilangan prima semu (pseudoprimes).
·         Misalnya komposit 341 (yaitu 341 = 11 × 31) adalah bilangan prima semu karena menurut teorema Fermat,

                                    2340 º 1 (mod 341)

Untunglah bilangan prima semu relatif jarang terdapat.


Contoh 18.
Periksalah bahwa (i) 316 º 1 (mod 17) dan (ii) 186 º 1 (mod 49).
Penyelesaian:
(i)         Dengan mengetahui bahwa kongruen 33 º 10 (mod 17), kuadratkan kongruen tersebut menghasilkan

      36 º 100 º –2  (mod 17)

       Kuadratkan lagi untuk menghasilkan

            312 º 4 (mod 17)

      Dengan demikian, 316 º 312 × 33  × 3 º 4 × 10 × 3 º 120 º 1 (mod 17)       

(ii)  Caranya sama seperti penyelesaian (i) di atas:
           
            182 º 324 º 30 (mod 49)
            184 º 900 º 18 (mod 49)
            186 º 184 × 182 º 18 × 30 º 540 º 1 (mod 49)
           


Fungsi Euler f

Fungsi Euler f medefinisikan f(n) untuk n ³ 1 yang menyatakan jumlah bilangan bulat positif < n yang relatif prima dengan n.

Contoh 19.
Tentukan f(20).
Penyelesaian:
Bilangan bulat positif yang lebih kecil dari 20 adalah 1 sampai 19. Di antara bilangan-bilangan tersebut, terdapat f(20) = 8 buah yang relatif prima dengan 20, yaitu 1, 3, 7, 9, 11, 13, 17, 19.

Untuk n = 1, 2, …, 10, fungsi Euler adalah

            f(1) = 0                                   f(6) = 2
            f(2) = 1                                   f(7) = 6
            f(3) = 2                                   f(8) = 4
            f(4) = 2                                   f(9) = 6
            f(5) = 4                                   f(10) = 4
·         Jika n prima, maka setiap bilangan bulat yang lebih kecil dari n relatif prima terhadap n. Dengan kata lain, f(n) = n – 1 hanya jika n prima.

Contoh 20.
f(3) = 2, f(5) = 4, f(7) = 6, f(11) = 10, f(13) = 12, …


Teorema 5. Jika n = pq adalah bilangan komposit dengan p dan q prima, maka f(n) = f(p) f(q) = (p – 1)(q – 1).

Contoh 21.
Tentukan f(21).
Penyelesaian:
Karena 21 = 7 × 3, f(21) = f(7) f(3) = 6 × 2 = 12 buah bilangan bulat yang relatif prima terhadap 21, yaitu 1, 2, 4, 5, 8, 10, 11, 13, 14, 17, 19, 20.

Teorema 6. Jika p bilangan prima dan k > 0, maka f(pk) = pkpk-1 = pk-1(p – 1) .


Contoh 22.
Tentukan f(16).
Penyelesaian:
Karena f(16) = f(24) = 24 – 23 = 16 – 8 = 8, maka ada delapan buah bilangan bulat yang relatif prima terhadap 16, yaitu 1, 3, 5, 7, 9, 11, 13.


Teorema 7 (Euler’s generalization of Fermat theorem). Jika PBB(a, n) = 1, maka
            af(n) mod n = 1             (atau af(n) º 1 (mod n) )